Technical Communication, Fall 2019

Class 2: Designing technical presentations

Instructor: Michael Szell Sep 3, 2019

IT UNIVERSITY OF COPENHAGEN

Today you will learn how to design scientific presentations

Good and bad examples of technical presentations

Structural design of presentations

Slide design

Space is not distributed in a fair way between different modes of transport

Enace for parts Espace for bikes Proved space Reliting Space for cars and used space

Today you will NOT learn

How to deliver a presentation:

Will be done by Helle in class 5 on Sep 24.

Finding the Higgs Boson was the most important goal of particle physics for decades

The Higgs Boson validates the **Standard Model of Physics**

The Higgs Boson is what gives mass to particles

https://en.wikipedia.org/wiki/Standard_Model

Finding the Higgs Boson was the most important goal of particle physics for decades

It was proposed by Peter Higgs and other physicists in 1964!

Because of its significance some media called it "God Particle"

https://en.wikipedia.org/wiki/Higgs_boson

When CERN discovered a new boson, it lead to extreme media hype and ultimately to a Nobel Prize for Higgs

The LHC costed 13,500,000,000 EUR

IGH

https://arxiv.org/abs/1603.00886

Let's look at how CERN announced its monumental discovery

Opening slide from the announcement

Status of Standard Model Higgs searches in ATLAS

Using the full datasets recorded in 2011 at $\int s = 7$ TeV and 2012 at *Js*=8 TeV: up to 10.7 fb⁻¹

Fabiola Gianotti (CERN), representing the ATLAS Collaboration

Slide 3 from the announcement

Slide 11 from the announcement

After 32 more slides with similar details...

The big result is presented on slide 44

The big result is summarized on slide 51

We have presented preliminary results on searches for a SM Higgs boson using the full data sample recorded so far for $H \rightarrow \gamma\gamma$ and $H \rightarrow 41$ (Js=7, 8 TeV, ~10.7 fb⁻¹) and the 2011 data ($\int s=7 \text{ TeV}$, ~ 4.9 fb⁻¹) for the other channels

Impressive accomplishment of the experiment in all its components: first results with full 2012 dataset were available less than one week from "end of data-taking", with a fraction of good-quality data used for physics of ~ 90% of the delivered luminosity

We have looked for a SM Higgs over the mass region 110-600 GeV in 12 channels

We have excluded at 99% CL the full region up to 523 GeV except 121.8< m_H<130.7 GeV

We observe an excess of events at $m_H \sim 126.5$ GeV with local significance 5.0 σ

□ The excess is driven by the two high mass resolution channels: $H \rightarrow \gamma \gamma (4.5 \sigma)$ and $H \rightarrow ZZ^* \rightarrow 4I (3.4 \sigma)$

Expected significance from a SM Higgs: 4.6 σ

 \Box Fitted signal strength: 1.2 \pm 0.3 of the SM expectation

If it is the SM Higgs, it's very kind of it to be at that mass → accessible at LHC in $\gamma\gamma$, ZZ^{*} \rightarrow 4I, WW^{*} \rightarrow IvIv, bb, $\tau\tau$

ATLAS: Status of SM Higgs searches, 4/7/2012

EXERCISE: What is wrong with this presentation?

Form groups of 4.

5 min: Discuss in group: 1) What are the biggest issues? 2) What is the reason for these issues?

5 min: Discuss with whole class

EXERCISE: What is wrong with this presentation?

What went wrong in the communication situation?

3 min: Fill in the table.

Discussion: What happened?

	WHO	WHAT	WHOM	WHY	HOW
How it was imagined					
What happened					

Discussion: What is wrong with this presentation?

Main mistake: The audience is ignored!

Who is the audience? Experts (scientists) and non-experts (science journalists + public)

Ignoring the audience leads to a chain of problems

WHOM	WHY	HOW		
	To inform colleagues	Technical presentation		
	To inform colleagues	Technical presentation		

Ignoring the audience leads to a chain of problems

	WHO	WHAT	WHOM	WHY	HOW
How it was imagined		BREAKTHROUGH OFTHEYEAR		To inform colleagues	Technical presentation
What happened		BREAKTHROUGH OFTHEYEAR		To inform colleagues	Technical presentation
How should it have happened?		BREAKTHROUGH OFTHEYEAR		To inform the public	Non-technica presentation

Structural design of presentations

To excel in your presentations, you need content, passion, and a good sense of your audience

Both content and passion are necessary

Passion but no content

Content but no passion

Both content and passion are necessary

Carl Sagan effect: Mistaking passionate communication with lack of content

When presenting, you must seize upon the advantages of presentations and downplay the disadvantages

Advantages?

Disadvantages?

When presenting, you must seize upon the advantages of presentations and downplay the disadvantages

Advantages

- Chance to answer questions
- Chance to read expressions
- <u>Chance to emphasize key points</u>
- <u>Ability to use visual aids</u>
- Assurance that audience has witnessed the content

Disadvantages

- One chance to talk, one chance to hear
- Difficult for audience to look up background information
- Audience restricted by pace of speaker
- Success dependent on delivery
- Difficult assembling speaker and audience

Audience

Audience

What do they know?

Audience

What do they know?

Why will they be interested?

Audience

What do I want to achieve? Inform, persuade, inspire?

What do they know?

Why will they be interested?

DISCUSSION: Why are these slides not persuasive?

HISTORY OF O-RING DAMAGE ON SRM FIELD JOINTS

	SRM No.	Cross Sectional View			Top View		
		Erosion Depth _(in.)	Perimeter Affected (deg)	Nominal Dia. (in.)	Length Of Max Erosion (in.)	Total Heat Affected Length (in.)	Clocking Location (deg)
61A LH Center Field**	22A	None	None	0.280	None	None	36° - 66°
61A LH CENTER FIELD**	22A	NONE	NONE	0.280	NONE	NONE	338° - 18°
51C LH Forward Field**	1 5A	0.010	154.0	0.280	4.25	5.25	163
51C RH Center Field (prim)***	15 B	0.038	130.0	0.280	12.50	58.75	354
51C RH Center Field (sec)***	15 B	None	45.0	0.280	None	29.50	354
410 RH Forward Field	13B	0.028	110.0	0.280	3.00	None	275
41C LH Aft Field*	11A	None	None	0.280	None	None	-
410 LH Forward Field	10 A	0.040	217.0	0.280	3.00	14.50	351
STS-2 RH Aft Field	28	0.053	116.0	0.280	-	-	50

*Hot gas path detected in putty. Indication of heat on O-ring, but no damage.

**Soot behind primary O-ring.

***Soot behind primary O-ring, heat affected secondary O-ring.

Clocking rotation of leak check port - 0 deg.

OTHER SRM-15 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY AND NO SOOT HEAR OR BEYOND THE PRIMARY O-RING

SRM-22 FORWARD FIELD JOINT HAD PUTTY PATH TO PRIMARY 0-RING, BUT NO O-RING EROSION AND NO SOOT BLOWBY. OTHER SRM-22 FIELD JOINTS HAD NO BLOWHOLES IN PUTTY.

There is a culture of ineffective technical presentations. Why?

We imitate and follow social norms

What if the norm is bad?

Slides are an aid, NOT the main content

Not everything in a presentation needs slides

9 90 Nalmax Ma (a) 0 Im Youloid

Slides are for the audience, NOT for the presenter

¥

Slides are for the audience, NOT for the presenter

Literature Review

Hefner developed a dynamic electro-thermal model for IGBT. from of the temperature-dependent IGBT silicon chip, packages and here sinks. The temperature-dependent IGBT electrical model describes the instantaneous electrical behavior in terms of the instantaneous temperature of the IGBT silicon chip surface. The instantaneous power dissipated in the IGBT is calculated using the electrical model and determines the instantaneous heat ranchat is applied to the surface of the silicon chip thermal model. Hefner incorporated this methodology into the *SABER* circuit simulator.

Adams, Joshi and Blackharn considered thermal interactions between the heat sources, substrate, and encloses walls as affected by the thermal conductance of the walls and substrate with the intent of determining which physical effects and level of detail are necessary to accurately predict thermal behavior of discretely heated enclosures.

chen, Wu and Borojevich are modeling of thermal and electrical behavior using several commercial softwares (I-DEAS, Maxwell, Flotherm and Saber) and 3-D, transient approaches.

If you want a detailed takeaway, prepare a handout

Our research question is whether the dunlins of Iceland and the Baltic Sea are different subspecies

Our research question is whether the dunlins of Iceland and the Baltic Sea are different subspecies

New York, and with New York, N

≠

Our research question is whether the dunlins of Iceland and the dunlins of the Baltic Sea are different subspecies. At present, the Dunlins Calidris alpina in Northern Europe are considered one subspecies. However, if the dunlins of Iceland and the dunlins of the Baltic Sea are in fact different subspecies, then the subspecies of the Baltic sea might be a threatened species because their numbers are declining.

Collaborators: Jan T. Lifield and Liv Wennerberg of the University of Oslo "Population Differentiation in Dunlins Calidris alpina in Northern Europe" (Oslo, Norway: Zoological Museum, University of Oslo, 6 June 2004).

References:

Photo of Baltic dunlin by Lars Erik Joannessen ©

Map of Norwegian Sea from Wikipedia Commons: http://commons.wikimedia.org/wiki/File:Norwegian_Sea

Principal Researcher: Gunnhild Marthinsen, University of Oslo

Presentation software defaults are bad

outs	
outs	
vouts	
/outs	
/# »	
Area	2003
Click	to edit Master
	edit Master text sty
- Second level	
	o level Fourth level
	Click to – Secon • Thire

I need you to:

To excel in your scientific presentation, you guide your audience up the mountain of your work

Many good presentations have an hourglass structure

Big picture

Big picture

You must define a fitting scope and depth

unknown

The area is determined by the speaking time

unknown

unknown

too broad scope

too narrow depth

Problem 1: Trying to cover too much Problem 2: Talking too much about your struggles

too broad scope

too narrow depth

The success of a presentation is measured by how well you have communicated new insights.

Problem 1: Too many details Problem 2: Laundry lists, lack of guidance

- too narrow scope

Many good presentations have an hourglass structure

Accompany your facts with guidance

"This could sound obvious to you, but is an important concept to build on:" Easy fact

"This is the IMPORTANT INSIGHT of this work:" Important insight "Look how beautiful it is. Nobody knew before."

"This is a minor detail but interesting for the mathematicians:" Detail

Where do you need transitions?

You need transitions between sections

When you end, reconnect to the beginning

Good speakers make a transition between each slide

Example presentation

To prepare my presentation I analyzed the situation

HOM	WHY	HOW
vear DS students	Teach good presentations Inspire you about the topic	7 min presentation (non-technical

Revealing wasted urban space through data visualization

Michael Szell Computer Science Dept

Sep 3, 2019

IT UNIVERSITY OF COPENHAGEN

Space is not distributed in a fair way between different modes of transport

Space for cars and used space

Space for peds Peds crossing

Space for bikes and used space

Buildings "Dead" space

Most space is for cars, but most people use bikes

54% Carlanes

Copenhagenize

Can we use data science and visualization to learn more?

What a lovely green.. MONSTER

We visualized ALL parking spaces with polygon packing

There are huge differences between car and bike parking

There are huge differences betw

d bike parking

Our project What the Street!? covers 23 world cities

Open-sourced at https://github.com/moovel/lab-what-the-street

Why is there so much car parking?

Is it necessary?

Cars are used 36 minutes per day Cars are not used 1404 minutes per day

Cars are used 36 minutes per day Cars are not used 1404 minutes per day

A typical snapshot of Copenhagen

5,500 cars moving

250,000 cars parked

We are wasting space worth 6,000 playgrounds!

A typical snapshot of Copenhagen

5,500 cars moving

2.5 × CHRISTIANIA 6,000 = Playgrounds

250,000 cars parked

whatthestreet.moovellab.com

The Mobility Space Report: What the Street!?

Who owns

Copenhagen ?

City space is limited! What do you think, how much space is allocated to the different ways of moving through the city?

How can we get back all the space?

10% of self-driving cars can deliver same mobility

OECD, International Transport Forum (2015)

Self-driving, shared cars sound nice but are NOT the ultimate solution

space required to transport **60** people

space required to transport **60 people**

You can't beat math: Simple geometry tells us cars will ALWAYS be inefficient

Harms and Kansen, Netherlands Institute for Transport Policy Analysis (2017) Szell, Urban Planning 3, 1-20 (2018)

Pioneering cities have started to remove parking. Let us push for more to save our cities and the planet!

Michael Szell michael.szell.net

@mszll
misz@itu.dk

EXERCISE: Analyze the talk's structure

Form groups of 4.

10 min: Analyze in group

1) Content, passion, audience 2) Hourglass, sections and transitions 3) Scope and depth 4) Purpose fulfilled?

5 min: Discuss with whole class

10 min break

Slide design

DISCUSSION: Analyze the talk's slides

How are the slides different than in a "typical" research talk?

The beginning should answer what the presentation is about without leaving the audience behind

The beginning should answer what the presentation is about without leaving the audience behind

Determining Whether Atmospheric Mercury Goes into Surface Snow after a Depletion Event

Katrine Aspmo Torunn Berg **Norwegian Institute for** Air Research

Grethe Wibetoe University of Oslo, Dept. of Chemistry

June 16, 2004

A common error in the mapping of technical talks is to show a list that is not memorable

A common error in the mapping of technical talks is to show a list that is not memorable

This talk traces what happens to mercury after it depletes from the atmosphere in arctic regions

Theory for mercury cycling

Environmental implications

Measurements from Station

The assertion-evidence structure consists of a message headline supported by visual evidence

The assertion-evidence structure consists of a message headline supported by visual evidence

The assertion-evidence structure consists of a message headline supported by visual evidence

Space is not distributed in a fair way between different modes of transport

Copenhagenize

Change defaults: Bulleted lists lack logical connections

Change defaults: Bulleted lists lack logical connections

Change defaults: Set up master slides

>>	Slide Master Home Insert Dr	raw Transitions Animations Review View	≟ + SI
ument	Insert Slide Insert Master Leyout Preserve Leyout P	Insert Foctors Themes Aa Fonts ✓ Hide Background Styles Slide Size Slide Mester	
	1 Chef R5 and R Master Little style	Click to edit Master title style	
	Cick to ecit. Marter title riyle		
	(that insufficiently blacker - continues of the	Click to edit Master text styles	
	Elice, to cell Minister Tifle at yes		
	(m) m1		
	etica to cell Mineto Tifu a da		
Done		[Alley, 2013]	
	(m. m)		

Change defaults: Use readable font consistently

Change defaults: Use readable font consistently

Maximize signal-to-noise and slow down with graphs

Change defaults: Cut all noise

Change defaults: Cut all noise

Change defaults: Cut all noise

How could you improve these slides?

Leave enough space, align, group

Final slides should emphasize the main takeaway

Final slides should emphasize the main takeaway

Final slides can give a call for action

Pioneering cities have started to remove parking. Let us push for more to save our cities and the planet!

michael.szell.net

Presentations for different purposes

When informing, be logical and straightforward

Tell them what you are going to tell them,

tell them,

and tell them what you told them.

https://en.wikipedia.org/wiki/Aristotle

When persuading, audience bias has to be considered

With an antagonistic audience, building credibility is most important

When inspiring or entertaining, passion & delivery is key

When teaching, present first evidence, then assertion

Preparing presentations

Before opening your computer, decide the story of your talk

Preparing today's 3.5-hour lecture took me 20+ hours

... and I did not practice much

EXERCISE: Improve your own presentation

10 min: Start improving your slides following the checklist

Form groups of 2. 5 min: Apply checklist to your partner's slides 5+5 min: Get+give feedback

Open: Continue improving until the whole checklist is satisfied

Mandatory assignment 1: Slides

Consider your own research topic (for example, first or second year project). Using this topic, create and hand in a deck of 5-12 slides in pdf format for a 6 minute presentation targeted towards *informing* a *general audience*. It should follow the assertion-evidence format and include images. Use the checklist to ensure quality slides.

Suggested starting point: the slides from an existing previous presentation like the ones you gave during your first/second year project exams. In a later class you will be expected to present.

Hand-in of this assignment is required for taking the final exam. Hand-in after the due date is not possible.

checklistslides.xlsx

Due date

Friday, 20 September 2019, 23:59

Today you learned

Presentations are much more than a list of facts

Slide design is important to not lose your audience

Space is not distributed in a fair way between different modes of transport

Space for cars Space for peds Space for bikes Dead' space

Copenhagenize

Know your audience!

Sources and further materials for today's class

The Craft of Scientific Presentations

Critical Steps to Succeed and Critical Errors to Avoid

Second Edition

https://www.craftofscientificpresentations.com